Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J. physiol. biochem ; 79(4): 787–797, nov. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-227552

RESUMO

Cardiovascular diseases and the ischemic heart disease specifically constitute the main cause of death worldwide. The ischemic heart disease may lead to myocardial infarction, which in turn triggers numerous mechanisms and pathways involved in cardiac repair and remodeling. Our goal in the present study was to characterize the effect of the NADPH oxidase 5 (NOX5) endothelial expression in healthy and infarcted knock-in mice on diverse signaling pathways. The mechanisms studied in the heart of mice were the redox pathway, metalloproteinases and collagen pathway, signaling factors such as NFκB, AKT or Bcl-2, and adhesion molecules among others. Recent studies support that NOX5 expression in animal models can modify the environment and predisposes organ response to harmful stimuli prior to pathological processes. We found many alterations in the mRNA expression of components involved in cardiac fibrosis as collagen type I or TGF-β and in key players of cardiac apoptosis such as AKT, Bcl-2, or p53. In the heart of NOX5-expressing mice after chronic myocardial infarction, gene alterations were predominant in the redox pathway (NOX2, NOX4, p22phox, or SOD1), but we also found alterations in VCAM-1 and β-MHC expression. Our results suggest that NOX5 endothelial expression in mice preconditions the heart, and we propose that NOX5 has a cardioprotective role. The correlation studies performed between echocardiographic parameters and cardiac mRNA expression supported NOX5 protective action. (AU)


Assuntos
Animais , Camundongos , Infarto do Miocárdio/genética , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , NADPH Oxidase 5/genética , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro
2.
J Physiol Biochem ; 79(4): 787-797, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37566320

RESUMO

Cardiovascular diseases and the ischemic heart disease specifically constitute the main cause of death worldwide. The ischemic heart disease may lead to myocardial infarction, which in turn triggers numerous mechanisms and pathways involved in cardiac repair and remodeling. Our goal in the present study was to characterize the effect of the NADPH oxidase 5 (NOX5) endothelial expression in healthy and infarcted knock-in mice on diverse signaling pathways. The mechanisms studied in the heart of mice were the redox pathway, metalloproteinases and collagen pathway, signaling factors such as NFκB, AKT or Bcl-2, and adhesion molecules among others. Recent studies support that NOX5 expression in animal models can modify the environment and predisposes organ response to harmful stimuli prior to pathological processes. We found many alterations in the mRNA expression of components involved in cardiac fibrosis as collagen type I or TGF-ß and in key players of cardiac apoptosis such as AKT, Bcl-2, or p53. In the heart of NOX5-expressing mice after chronic myocardial infarction, gene alterations were predominant in the redox pathway (NOX2, NOX4, p22phox, or SOD1), but we also found alterations in VCAM-1 and ß-MHC expression. Our results suggest that NOX5 endothelial expression in mice preconditions the heart, and we propose that NOX5 has a cardioprotective role. The correlation studies performed between echocardiographic parameters and cardiac mRNA expression supported NOX5 protective action.


Assuntos
Infarto do Miocárdio , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , NADPH Oxidase 5/genética , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Infarto do Miocárdio/genética , RNA Mensageiro , Proteínas Proto-Oncogênicas c-bcl-2
3.
J Physiol Biochem ; 79(2): 383-395, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36905456

RESUMO

NOX5 is the last member of the NADPH oxidase (NOXs) family to be identified and presents some specific characteristics differing from the rest of the NOXs. It contains four Ca2+ binding domains at the N-terminus and its activity is regulated by the intracellular concentration of Ca2+. NOX5 generates superoxide (O2•-) using NADPH as a substrate, and it modulates functions related to processes in which reactive oxygen species (ROS) are involved. Those functions appear to be detrimental or beneficial depending on the level of ROS produced. For example, the increase in NOX5 activity is related to the development of various oxidative stress-related pathologies such as cancer, cardiovascular, and renal diseases. In this context, pancreatic expression of NOX5 can negatively alter insulin action in high-fat diet-fed transgenic mice. This is consistent with the idea that the expression of NOX5 tends to increase in response to a stimulus or a stressful situation, generally causing a worsening of the pathology. On the other hand, it has also been suggested that it might have a positive role in preparing the body for metabolic stress, for example, by inducing a protective adipose tissue adaptation to the excess of nutrients supplied by a high-fat diet. In this line, its endothelial overexpression can delay lipid accumulation and insulin resistance development in obese transgenic mice by inducing the secretion of IL-6 followed by the expression of thermogenic and lipolytic genes. However, as NOX5 gene is not present in rodents and human NOX5 protein has not been crystallized, its function is still poorly characterized and further extensive research is required.


Assuntos
NADPH Oxidases , Superóxidos , Camundongos , Animais , Humanos , NADPH Oxidase 5/genética , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Superóxidos/metabolismo , Camundongos Transgênicos
4.
FEBS Lett ; 597(5): 702-713, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36653838

RESUMO

Six gene splice variants of superoxide-generating NADPH oxidase 5 (Nox5) have been identified in humans, and they differ in the sequence of their N-terminal cytoplasmic domains, which comprise four EF-hand motifs. Here, we demonstrated that the Ca2+ -dependent association and dissociation between the N- and C-terminal cytoplasmic domains of the Nox5ß variant are affected by the alanine substitution of the conserved Ile-113 or Leu-115 at the connecting loop between the third and fourth EF-hand motifs. These substitutions impair the cell surface localization of Nox5ß. In addition, the Nox5ε/S variant, lacking all EF-hand motifs, does not localize to the plasma membrane. Thus, the Ca2+ -sensitive intramolecular interaction determines the Nox5 subcellular localization, that is, whether Nox5 variants generate superoxide in the extracellular or intracellular space.


Assuntos
Proteínas de Membrana , NADPH Oxidases , Humanos , NADPH Oxidase 5/genética , NADPH Oxidase 5/metabolismo , Proteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Membrana Celular/metabolismo , Superóxidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Int J Cardiol ; 370: 454-462, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332749

RESUMO

BACKGROUND: Cardiac injury and inflammation are common findings in COVID-19 patients. Autopsy studies have revealed cardiac microvascular endothelial damage and thrombosis in COVID-19 patients, indicative of microvascular dysfunction in which reactive oxygen species (ROS) may play a role. We explored whether the ROS producing proteins NOX2, NOX4 and NOX5 are involved in COVID-19-induced cardio-microvascular endothelial dysfunction. METHODS: Heart tissue were taken from the left (LV) and right (RV) ventricle of COVID-19 patients (n = 15) and the LV of controls (n = 14) at autopsy. The NOX2-, NOX4-, NOX5- and Nitrotyrosine (NT)-positive intramyocardial blood vessels fractions were quantitatively analyzed using immunohistochemistry. RESULTS: The LV NOX2+, NOX5+ and NT+ blood vessels fractions in COVID-19 patients were significantly higher than in controls. The fraction of NOX4+ blood vessels in COVID-19 patients was comparable with controls. In COVID-19 patients, the fractions of NOX2+, NOX5+ and NT+ vessels did not differ significantly between the LV and RV, and correlated positively between LV and RV in case of NOX5 (r = 0.710; p = 0.006). A negative correlation between NOX5 and NOX2 (r = -0.591; p = 0.029) and between NOX5 and disease time (r = -0.576; p = 0.034) was noted in the LV of COVID-19 patients. CONCLUSION: We show the induction of NOX2 and NOX5 in the cardiac microvascular endothelium in COVID-19 patients, which may contribute to the previously observed cardio-microvascular dysfunction in COVID-19 patients. The exact roles of these NOXes in pathogenesis of COVID-19 however remain to be elucidated.


Assuntos
COVID-19 , NADPH Oxidase 2 , NADPH Oxidase 5 , Humanos , COVID-19/metabolismo , Endotélio Vascular/metabolismo , Coração , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidase 2/metabolismo
6.
Sci Rep ; 12(1): 11570, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35798762

RESUMO

Atherosclerosis and its complications are major causes of cardiovascular morbidity and death. Apart from risk factors such as hypercholesterolemia and inflammation, the causal molecular mechanisms are unknown. One proposed causal mechanism involves elevated levels of reactive oxygen species (ROS). Indeed, early expression of the ROS forming NADPH oxidase type 5 (Nox5) in vascular endothelial cells correlates with atherosclerosis and aortic aneurysm. Here we test the pro-atherogenic Nox5 hypothesis using mouse models. Because Nox5 is missing from the mouse genome, a knock-in mouse model expressing human Nox5 in its physiological location of endothelial cells (eNOX5ki/ki) was tested as a possible new humanised mouse atherosclerosis model. However, whether just on a high cholesterol diet or by crossing in aortic atherosclerosis-prone ApoE-/- mice with and without induction of diabetes, Nox5 neither induced on its own nor aggravated aortic atherosclerosis. Surprisingly, however, diabetic ApoE-/- x eNOX5ki/ki mice developed aortic aneurysms more than twice as often correlating with lower vascular collagens, as assessed by trichrome staining, without changes in inflammatory gene expression, suggesting that endothelial Nox5 directly affects extracellular matrix remodelling associated with aneurysm formation in diabetes. Thus Nox5-derived reactive oxygen species are not a new independent mechanism of atherosclerosis but may enhance the frequency of abdominal aortic aneurysms in the context of diabetes. Together with similar clinical findings, our preclinical target validation opens up a first-in-class mechanism-based approach to treat or even prevent abdominal aortic aneurysms.


Assuntos
Aneurisma da Aorta Abdominal , Aterosclerose , Diabetes Mellitus , NADPH Oxidase 5 , Animais , Aterosclerose/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Camundongos , Camundongos Knockout para ApoE , NADPH Oxidase 5/metabolismo , Oxigênio , Espécies Reativas de Oxigênio/metabolismo
7.
Andrologia ; 54(8): e14470, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35679508

RESUMO

NOX5 is introduced as a new therapeutic target for infertility treatment. This study aimed to compare the basal and stimulated reactive oxygen species (ROS) production and sperm function in human teratozoospermic (n = 15) and normozoospermic (n = 17) semen samples following calcium overload and NOX5 activation. Washed spermatozoa incubated for 1 h under five various conditions: control group, adding a calcium ionophore A23187, phorbol myristate acetate (PMA), A23187 + PMA, and diphenylene iodonium (DPI) + A23187 + PMA. ROS generation was measured immediately after treatment for 30 min. Motility, viability, acrosome reaction, and apoptosis were evaluated after 1-h incubation. ROS production significantly increased when A23187 or PMA was added to the sperm medium. DPI had suppressive effects on ROS generation. Progressive and total motility significantly decreased following calcium elevation and NOX5 activation, which was somewhat returned by DPI. Necrotic and live cells in teratozoospermia was, respectively, higher and lower than normozoospermia samples. Incubation with A23187 significantly increased the percentage of early and late apoptosis. Teratozoosperm are more vulnerable than normal spermatozoa, and produce more basal and stimulated ROS. It seems that calcium overload induces apoptosis in spermatozoa and loss of viability through MPT pore opening and increased intracellular ROS.


Assuntos
Cálcio , NADPH Oxidase 5 , Espécies Reativas de Oxigênio , Espermatozoides , Calcimicina/farmacologia , Cálcio/metabolismo , Humanos , Masculino , NADPH Oxidase 5/genética , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sêmen/efeitos dos fármacos , Sêmen/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Motilidade dos Espermatozoides/genética , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo
8.
Diabetes ; 71(6): 1282-1298, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35275988

RESUMO

Excessive production of renal reactive oxygen species (ROS) plays a major role in diabetic kidney disease (DKD). Here, we provide key findings demonstrating the predominant pathological role of the pro-oxidant enzyme NADPH oxidase 5 (NOX5) in DKD, independent of the previously characterized NOX4 pathway. In patients with diabetes, we found increased expression of renal NOX5 in association with enhanced ROS formation and upregulation of ROS-sensitive factors early growth response 1 (EGR-1), protein kinase C-α (PKC-α), and a key metabolic gene involved in redox balance, thioredoxin-interacting protein (TXNIP). In preclinical models of DKD, overexpression of NOX5 in Nox4-deficient mice enhances kidney damage by increasing albuminuria and augmenting renal fibrosis and inflammation via enhanced ROS formation and the modulation of EGR1, TXNIP, ERK1/2, PKC-α, and PKC-ε. In addition, the only first-in-class NOX inhibitor, GKT137831, appears to be ineffective in the presence of NOX5 expression in diabetes. In vitro, silencing of NOX5 in human mesangial cells attenuated upregulation of EGR1, PKC-α, and TXNIP induced by high glucose levels, as well as markers of inflammation (TLR4 and MCP-1) and fibrosis (CTGF and collagens I and III) via reduction in ROS formation. Collectively, these findings identify NOX5 as a superior target in human DKD compared with other NOX isoforms such as NOX4, which may have been overinterpreted in previous rodent studies.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Fibrose , Humanos , Inflamação/metabolismo , Camundongos , NADPH Oxidase 4/genética , NADPH Oxidase 5/genética , NADPH Oxidase 5/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
9.
Biomed Pharmacother ; 145: 112460, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34864314

RESUMO

Familial hypercholesterolemia (FH) is associated with low-grade systemic inflammation, a key driver of premature atherosclerosis. We investigated the effects of inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9) function on inflammatory state, endothelial dysfunction and cardiovascular outcomes in patients with FH. Fourteen patients with FH were evaluated before and 8 weeks after administration of a PCSK9 blocking monoclonal antibody (alirocumab, 150 mg/subcutaneous/14 days). In vivo and ex vivo analysis revealed that alirocumab blunted the attachment of leukocytes to TNFα-stimulated human umbilical arterial endothelial cells (HUAEC) and suppressed the activation of platelets and most leukocyte subsets, which was accompanied by the diminished expression of CX3CR1, CXCR6 and CCR2 on several leukocyte subpopulations. By contrast, T-regulatory cell activation was enhanced by alirocumab treatment, which also elevated anti-inflammatory IL-10 plasma levels and lowered circulating pro-inflammatory cytokines. Plasma levels of IFNγ positively correlated with levels of total and LDL-cholesterol, whereas circulating IL-10 levels negatively correlated with these key lipid parameters. In vitro analysis revealed that TNFα stimulation of HUAEC increased the expression of PCSK9, whereas endothelial PCSK9 silencing reduced TNFα-induced mononuclear cell adhesion mediated by Nox5 up-regulation and p38-MAPK/NFκB activation, concomitant with reduced SREBP2 expression. PCSK9 silencing also decreased endothelial CX3CL1 and CXCL16 expression and chemokine generation. In conclusion, PCSK9 inhibition impairs systemic inflammation and endothelial dysfunction by constraining leukocyte-endothelium interactions. PCSK9 blockade may constitute a new therapeutic approach to control the inflammatory state associated with FH, preventing further cardiovascular events in this cardiometabolic disorder.


Assuntos
Anticorpos Monoclonais Humanizados , Células Endoteliais , Hiperlipoproteinemia Tipo II , NADPH Oxidase 5/metabolismo , Pró-Proteína Convertase 9/imunologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacocinética , Linhagem Celular , Quimiocina CX3CL1/metabolismo , Quimiocina CXCL16/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hiperlipoproteinemia Tipo II/tratamento farmacológico , Hiperlipoproteinemia Tipo II/imunologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Síndrome Metabólica/tratamento farmacológico , Inibidores de PCSK9/administração & dosagem , Inibidores de PCSK9/farmacologia
10.
Cardiovasc Res ; 118(9): 2196-2210, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34273166

RESUMO

AIMS: Smokers are at increased risk of cardiovascular events. However, the exact mechanisms through which smoking influences cardiovascular disease resulting in accelerated atherosclerosis and vascular calcification are unknown. The aim of this study was to investigate effects of nicotine on initiation of vascular smooth muscle cell (VSMC) calcification and to elucidate underlying mechanisms. METHODS AND RESULTS: We assessed vascular calcification of 62 carotid lesions of both smoking and non-smoking patients using ex vivo micro-computed tomography (µCT) scanning. Calcification was present more often in carotid plaques of smokers (n = 22 of 30, 73.3%) compared to non-smokers (n = 11 of 32, 34.3%; P < 0.001), confirming higher atherosclerotic burden. The difference was particularly profound for microcalcifications, which was 17-fold higher in smokers compared to non-smokers. In vitro, nicotine-induced human primary VSMC calcification, and increased osteogenic gene expression (Runx2, Osx, BSP, and OPN) and extracellular vesicle (EV) secretion. The pro-calcifying effects of nicotine were mediated by Ca2+-dependent Nox5. SiRNA knock-down of Nox5 inhibited nicotine-induced EV release and calcification. Moreover, pre-treatment of hVSMCs with vitamin K2 ameliorated nicotine-induced intracellular oxidative stress, EV secretion, and calcification. Using nicotinic acetylcholine receptor (nAChR) blockers α-bungarotoxin and hexamethonium bromide, we found that the effects of nicotine on intracellular Ca2+ and oxidative stress were mediated by α7 and α3 nAChR. Finally, we showed that Nox5 expression was higher in carotid arteries of smokers and correlated with calcification levels in these vessels. CONCLUSION: In this study, we provide evidence that nicotine induces Nox5-mediated pro-calcific processes as novel mechanism of increased atherosclerotic calcification. We identified that activation of α7 and α3 nAChR by nicotine increases intracellular Ca2+ and initiates calcification of hVSMCs through increased Nox5 activity, leading to oxidative stress-mediated EV release. Identifying the role of Nox5-induced oxidative stress opens novel avenues for diagnosis and treatment of smoking-induced cardiovascular disease.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Vesículas Extracelulares , Músculo Liso Vascular , Nicotina , Calcificação Vascular , Aterosclerose/metabolismo , Cálcio/metabolismo , Doenças Cardiovasculares/metabolismo , Células Cultivadas , Vesículas Extracelulares/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 5/metabolismo , NADPH Oxidase 5/farmacologia , Nicotina/efeitos adversos , Nicotina/metabolismo , Estresse Oxidativo , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Microtomografia por Raio-X
11.
Cardiovasc Res ; 118(5): 1359-1373, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-34320175

RESUMO

AIMS: NOX-derived reactive oxygen species (ROS) are mediators of signalling pathways implicated in vascular smooth muscle cell (VSMC) dysfunction in hypertension. Among the numerous redox-sensitive kinases important in VSMC regulation is c-Src. However, mechanisms linking NOX/ROS to c-Src are unclear, especially in the context of oxidative stress in hypertension. Here, we investigated the role of NOX-induced oxidative stress in VSMCs in human hypertension focusing on NOX5, and explored c-Src, as a putative intermediate connecting NOX5-ROS to downstream effector targets underlying VSMC dysfunction. METHODS AND RESULTS: VSMC from arteries from normotensive (NT) and hypertensive (HT) subjects were studied. NOX1,2,4,5 expression, ROS generation, oxidation/phosphorylation of signalling molecules, and actin polymerization and migration were assessed in the absence and presence of NOX5 (melittin) and Src (PP2) inhibitors. NOX5 and p22phox-dependent NOXs (NOX1-4) were down-regulated using NOX5 siRNA and p22phox-siRNA approaches. As proof of concept in intact vessels, vascular function was assessed by myography in transgenic mice expressing human NOX5 in a VSMC-specific manner. In HT VSMCs, NOX5 was up-regulated, with associated oxidative stress, hyperoxidation (c-Src, peroxiredoxin, DJ-1), and hyperphosphorylation (c-Src, PKC, ERK1/2, MLC20) of signalling molecules. NOX5 siRNA reduced ROS generation in NT and HT subjects. NOX5 siRNA, but not p22phox-siRNA, blunted c-Src phosphorylation in HT VSMCs. NOX5 siRNA reduced phosphorylation of MLC20 and FAK in NT and HT. In p22phox- silenced HT VSMCs, Ang II-induced phosphorylation of MLC20 was increased, effects blocked by melittin and PP2. NOX5 and c-Src inhibition attenuated actin polymerization and migration in HT VSMCs. In NOX5 transgenic mice, vascular hypercontractilty was decreased by melittin and PP2. CONCLUSION: We define NOX5/ROS/c-Src as a novel feedforward signalling network in human VSMCs. Amplification of this system in hypertension contributes to VSMC dysfunction. Dampening the NOX5/ROS/c-Src pathway may ameliorate hypertension-associated vascular injury.


Assuntos
Hipertensão , Músculo Liso Vascular , Actinas/metabolismo , Angiotensina II/metabolismo , Animais , Células Cultivadas , Humanos , Meliteno/metabolismo , Meliteno/farmacologia , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 5/genética , NADPH Oxidase 5/metabolismo , NADPH Oxidase 5/farmacologia , Oxirredução , Proteínas Tirosina Quinases/metabolismo , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo
12.
Biochem Biophys Res Commun ; 580: 107-112, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638028

RESUMO

Peroxynitrite is a reactive intermediate formed in vivo through uncatalysed reaction of superoxide and nitric oxide radicals. Despite significant interest in detecting peroxynitrite in vivo and understanding its production, little attention has been given to the evolutionary origins of peroxynitrite signalling. Herein we focus on two enzymes that are key to the biosynthesis of superoxide and nitric oxide, NADPH oxidase 5 (NOX5) and endothelial nitric oxide synthase (eNOS), respectively. Multiple sequence alignments of both enzymes including homologues from all domains of life, coupled with a phylogenetic analysis of NOX5, suggest eNOS and NOX5 are present in animals as the result of horizontal gene transfer from ancestral cyanobacteria to ancestral eukaryotes. Therefore, biochemical studies from other laboratories on a NOX5 homologue in Cylindrospermum stagnale and an eNOS homologue in Synechococcus sp. PCC 7335 are likely to be of relevance to human NOX5 and eNOS and to the production of superoxide, nitric oxide and peroxynitrite in humans.


Assuntos
Ácido Peroxinitroso/metabolismo , Transdução de Sinais , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Evolução Molecular , Humanos , NADPH Oxidase 5/genética , NADPH Oxidase 5/metabolismo , Óxido Nítrico/genética , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ácido Peroxinitroso/genética , Filogenia , Superóxidos/metabolismo
13.
Clin Transl Med ; 11(8): e472, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34459125

RESUMO

Activation of cancer-associated fibroblasts (CAFs) is a crucial feature for tumor malignancy. The reciprocal interplay between tumor cells and CAFs not only facilitates tumor progression and metastasis but also sustains the tumor-promoting function of CAFs. Nevertheless, how tumor cells readily adapt to these functional CAFs is still unclear. NADPH oxidase 5 (NOX5) is a strong reactive oxygen species producer overexpressed in esophageal squamous cell carcinoma (ESCC) cells. In this study, we showed that NOX5-positive ESCC cells induced normal fibroblasts (NFs) or adipose-derived mesenchymal stem cells (MSCs) to express the marker of CAFs-α smooth muscle actin. Moreover, these tumor cells reprogrammed the cytokine profile of the activated CAFs, which further stimulated NFs or MSCs to CAFs and induced lymphangiogenesis to facilitate ESCC malignancy. NOX5 activated intratumoral Src/nuclear factor-κB signaling to stimulate secretion of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and lactate from tumor cells. Subsequently, TNF-α, IL-1ß, and lactate activated CAFs, and facilitated the secretion of IL-6, IL-7, IL-8, CCL5, and transforming growth factor-ß1 from CAFs. These CAFs-derived cytokines reciprocally induced the progression of NOX5-positive ESCC cells. Our findings together indicate that NOX5 serves as the driving oncoprotein to provide a niche that is beneficial for tumor malignant progression.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Citocinas/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , NADPH Oxidase 5/metabolismo , Animais , Citocinas/genética , Modelos Animais de Doenças , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Humanos , Camundongos , NADPH Oxidase 5/genética , Transdução de Sinais/genética
14.
Int J Oncol ; 59(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34278462

RESUMO

NADPH oxidases (NOXs) are a family of transmembrane proteins that generate reactive oxygen species. It was previously reported that patients with colon cancer who had high NOX5 expression had poor prognosis. However, no studies have investigated the cellular functions of NOX5 in colon cancer. The present study aimed to clarify the relationship between NOX5 and cancer development using an in vitro model. Reverse transcription­quantitative PCR was performed to determine the NOX5 expression levels of colon cancer cell lines. NOX5­knockdown experiments were conducted, and the effect on cell proliferation, migration, and invasion were analyzed. In addition, mRNA microarray was conducted to assess changes in gene profile. NOX5 mRNA expression was high in HCT116 cells and moderate in SW48 cells. NOX5 knockdown significantly inhibited cell migration and invasion in both HCT116 and SW48 cells; however, NOX5 knockdown reduced cell proliferation in only HCT116 cells. mRNA microarrays revealed a strong relationship between NOX5 expression levels and integrin­linked kinase signaling pathways. The NOX5 expression in colon cancer cells affected cancer progression, especially cell motility. NOX5 may be a novel therapeutic target for the future development of treatments for colon cancer.


Assuntos
Neoplasias do Colo/genética , NADPH Oxidase 5/genética , NADPH Oxidase 5/metabolismo , Regulação para Cima , Idoso , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias do Colo/metabolismo , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais
15.
Clin Sci (Lond) ; 135(15): 1845-1858, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34269800

RESUMO

OBJECTIVE: The mechanisms involved in NOX5 activation in atherosclerotic processes are not completely understood. The present study tested the hypothesis that lysophosphatidylcholine (LPC), a proatherogenic component of oxLDL, induces endothelial calcium influx, which drives NOX5-dependent reactive oxygen species (ROS) production, oxidative stress, and endothelial cell dysfunction. APPROACH: Human aortic endothelial cells (HAEC) were stimulated with LPC (10-5 M, for different time points). Pharmacological inhibition of NOX5 (Melittin, 10-7 M) and NOX5 gene silencing (siRNA) was used to determine the role of NOX5-dependent ROS production in endothelial oxidative stress induced by LPC. ROS production was determined by lucigenin assay and electron paramagnetic spectroscopy (EPR), calcium transients by Fluo4 fluorimetry, and NOX5 activity and protein expression by pharmacological assays and immunoblotting, respectively. RESULTS: LPC increased ROS generation in endothelial cells at short (15 min) and long (4 h) stimulation times. LPC-induced ROS was abolished by a selective NOX5 inhibitor and by NOX5 siRNA. NOX1/4 dual inhibition and selective NOX1 inhibition only decreased ROS generation at 4 h. LPC increased HAEC intracellular calcium, important for NOX5 activation, and this was blocked by nifedipine and thapsigargin. Bapta-AM, selective Ca2+ chelator, prevented LPC-induced ROS production. NOX5 knockdown decreased LPC-induced ICAM-1 mRNA expression and monocyte adhesion to endothelial cells. CONCLUSION: These results suggest that NOX5, by mechanisms linked to increased intracellular calcium, is key to early LPC-induced endothelial oxidative stress and pro-inflammatory processes. Since these are essential events in the formation and progression of atherosclerotic lesions, the present study highlights an important role for NOX5 in atherosclerosis.


Assuntos
Aterosclerose/enzimologia , Células Endoteliais/efeitos dos fármacos , Lisofosfatidilcolinas/toxicidade , NADPH Oxidase 5/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Aterosclerose/patologia , Cálcio/metabolismo , Sinalização do Cálcio , Adesão Celular , Células Cultivadas , Técnicas de Cocultura , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Monócitos/metabolismo , NADPH Oxidase 5/antagonistas & inibidores , NADPH Oxidase 5/genética , Interferência de RNA
16.
PLoS Biol ; 18(11): e3000885, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33170835

RESUMO

Hypertension is the most important cause of death and disability in the elderly. In 9 out of 10 cases, the molecular cause, however, is unknown. One mechanistic hypothesis involves impaired endothelium-dependent vasodilation through reactive oxygen species (ROS) formation. Indeed, ROS forming NADPH oxidase (Nox) genes associate with hypertension, yet target validation has been negative. We re-investigate this association by molecular network analysis and identify NOX5, not present in rodents, as a sole neighbor to human vasodilatory endothelial nitric oxide (NO) signaling. In hypertensive patients, endothelial microparticles indeed contained higher levels of NOX5-but not NOX1, NOX2, or NOX4-with a bimodal distribution correlating with disease severity. Mechanistically, mice expressing human Nox5 in endothelial cells developed-upon aging-severe systolic hypertension and impaired endothelium-dependent vasodilation due to uncoupled NO synthase (NOS). We conclude that NOX5-induced uncoupling of endothelial NOS is a causal mechanism and theragnostic target of an age-related hypertension endotype. Nox5 knock-in (KI) mice represent the first mechanism-based animal model of hypertension.


Assuntos
Hipertensão/fisiopatologia , NADPH Oxidase 5/genética , Óxido Nítrico/metabolismo , Adulto , Fatores Etários , Idoso , Animais , Células Endoteliais , Endotélio Vascular , Feminino , Técnicas de Introdução de Genes/métodos , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Pessoa de Meia-Idade , NADPH Oxidase 5/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Óxido Nítrico/genética , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Espécies Reativas de Oxigênio
17.
Sci Rep ; 10(1): 17818, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082354

RESUMO

Vascular smooth muscle cell (VSMC) function is regulated by Nox-derived reactive oxygen species (ROS) and redox-dependent signaling in discrete cellular compartments. Whether cholesterol-rich microdomains (lipid rafts/caveolae) are involved in these processes is unclear. Here we examined the sub-cellular compartmentalization of Nox isoforms in lipid rafts/caveolae and assessed the role of these microdomains in VSMC ROS production and pro-contractile and growth signaling. Intact small arteries and primary VSMCs from humans were studied. Vessels from Cav-1-/- mice were used to test proof of concept. Human VSMCs express Nox1, Nox4, Nox5 and Cav-1. Cell fractionation studies showed that Nox1 and Nox5 but not Nox4, localize in cholesterol-rich fractions in VSMCs. Angiotensin II (Ang II) stimulation induced trafficking into and out of lipid rafts/caveolae for Nox1 and Nox5 respectively. Co-immunoprecipitation studies showed interactions between Cav-1/Nox1 but not Cav-1/Nox5. Lipid raft/caveolae disruptors (methyl-ß-cyclodextrin (MCD) and Nystatin) and Ang II stimulation variably increased O2- generation and phosphorylation of MLC20, Ezrin-Radixin-Moesin (ERM) and p53 but not ERK1/2, effects recapitulated in Cav-1 silenced (siRNA) VSMCs. Nox inhibition prevented Ang II-induced phosphorylation of signaling molecules, specifically, ERK1/2 phosphorylation was attenuated by mellitin (Nox5 inhibitor) and Nox5 siRNA, while p53 phosphorylation was inhibited by NoxA1ds (Nox1 inhibitor). Ang II increased oxidation of DJ1, dual anti-oxidant and signaling molecule, through lipid raft/caveolae-dependent processes. Vessels from Cav-1-/- mice exhibited increased O2- generation and phosphorylation of ERM. We identify an important role for lipid rafts/caveolae that act as signaling platforms for Nox1 and Nox5 but not Nox4, in human VSMCs. Disruption of these microdomains promotes oxidative stress and Nox isoform-specific redox signalling important in vascular dysfunction associated with cardiovascular diseases.


Assuntos
Doenças Cardiovasculares/metabolismo , Caveolina 1/metabolismo , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo , Músculo Liso Vascular/metabolismo , NADPH Oxidase 1/metabolismo , NADPH Oxidase 5/metabolismo , Animais , Doenças Cardiovasculares/patologia , Caveolina 1/genética , Humanos , Camundongos , Camundongos Knockout , Músculo Liso Vascular/patologia , Oxirredução , Estresse Oxidativo , RNA Interferente Pequeno/genética , Transdução de Sinais
18.
Int J Biochem Cell Biol ; 128: 105851, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32949687

RESUMO

Oxidative stress is one of the main mechanisms involved in the pathophysiology of vascular diseases. Among others, oxidative stress promotes endothelial dysfunction, and accelerated ageing and remodelling of vasculature. Lately, NADPH oxidases have been demonstrated to be involved in cardiovascular diseases. NADPH oxidase 5 has emerged as a new player in oxidative stress-mediated endothelial alterations, involved in the pathophysiology of hypertension, diabetes, atherosclerosis, myocardial infarction and stroke. This oxidase seems to mediate its detrimental effects by promoting inflammation. NADPH oxidase 5 has been studied in a lesser extent compared with the other members of the NADPH oxidase family due to its loss in the rodent genome, the main experimental research model. In addition, its potential as a therapeutic target remains unexplored given the lack of specific inhibitors. In this review the latest findings on NADPH oxidase 5 regulation, implications in vascular pathophysiology and therapeutic approaches will be updated.


Assuntos
Doenças Cardiovasculares/enzimologia , Diabetes Mellitus/enzimologia , Endotélio Vascular/enzimologia , NADPH Oxidase 5/metabolismo , Humanos
19.
Signal Transduct Target Ther ; 5(1): 139, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32792487

RESUMO

Reactive oxygen species (ROS) localized at the precise subcellular compartments are essential for regulating the activity of signaling proteins. Furthermore, ROS are master regulators of tumor malignant progression that respond to a diverse set of environmental stress, especially hypoxia. NADPH oxidases (NOXs) appear to be activated within discrete subcellular compartments to facilitate local ROS production. However, the subcellular function of NOXs in hypoxic tumor is still unclear. In this study, we demonstrated that NOX5 was greatly upregulated in clinical esophageal squamous cell carcinoma (ESCC) tumors, ESCC cell lines or primary ESCC cells, and elevated NOX5 was correlated to malignancy of ESCC tumors and poor prognosis. NOX5 induced the malignant progression of ESCC by activating Src, especially under hypoxic condition. Mechanistically, we showed that hypoxia promoted the interaction between NOX5 and Pyk2 on cell membrane via facilitating Ca2+-mediated Pyk2 Tyr402 site phosphorylation. Subsequently, Pyk2 acted as a scaffold for c-Abl phosphorylating the catalytic domain of NOX5 Tyr476/478 sites, which in turn upregulated hydrogen peroxide (H2O2) inside the Pyk2/NOX5 complex to oxidize and activate local Src. These findings provide insights into the biological significance of NOX5 in the development of ESCC.


Assuntos
Membrana Celular/enzimologia , Neoplasias Esofágicas/enzimologia , Carcinoma de Células Escamosas do Esôfago/enzimologia , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Quinases da Família src/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/genética , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Feminino , Humanos , Camundongos , Camundongos Nus , NADPH Oxidase 5/genética , Oxirredução , Quinases da Família src/genética
20.
Hypertension ; 76(3): 827-838, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32683902

RESUMO

NOX5 (NADPH oxidase 5) is a homolog of the gp91phox subunit of the phagocyte NOX, which generates reactive oxygen species. NOX5 is involved in sperm motility and vascular contraction and has been implicated in diabetic nephropathy, atherosclerosis, and stroke. The function of NOX5 in the cardiac hypertrophy is unknown. Because NOX5 is a Ca2+-sensitive, procontractile NOX isoform, we questioned whether it plays a role in cardiac hypertrophy. Studies were performed in (1) cardiac tissue from patients undergoing heart transplant for cardiomyopathy and heart failure, (2) NOX5-expressing rat cardiomyocytes, and (3) mice expressing human NOX5 in a cardiomyocyte-specific manner. Cardiac hypertrophy was induced in mice by transverse aorta coarctation and Ang II (angiotensin II) infusion. NOX5 expression was increased in human failing hearts. Rat cardiomyocytes infected with adenoviral vector encoding human NOX5 cDNA exhibited elevated reactive oxygen species levels with significant enlargement and associated increased expression of ANP (atrial natriuretic peptides) and ß-MHC (ß-myosin heavy chain) and prohypertrophic genes (Nppa, Nppb, and Myh7) under Ang II stimulation. These effects were reduced by N-acetylcysteine and diltiazem. Pressure overload and Ang II infusion induced left ventricular hypertrophy, interstitial fibrosis, and contractile dysfunction, responses that were exaggerated in cardiac-specific NOX5 trangenic mice. These phenomena were associated with increased reactive oxygen species levels and activation of redox-sensitive MAPK (mitogen-activated protein kinase). N-acetylcysteine treatment reduced cardiac oxidative stress and attenuated cardiac hypertrophy in NOX5 trangenic. Our study defines Ca2+-regulated NOX5 as an important NOX isoform involved in oxidative stress- and MAPK-mediated cardiac hypertrophy and contractile dysfunction.


Assuntos
Acetilcisteína/farmacologia , Cardiomegalia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Angiotensina II/farmacologia , Animais , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Sequestradores de Radicais Livres/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Isoenzimas/metabolismo , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fagócitos/enzimologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Vasoconstritores/farmacologia , Miosinas Ventriculares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...